
Asian Journal of Multidisciplinary Studies

Vol. 1, No. 2, (2018)
ISSN 2651-6691 (Print)

ISSN 2651-6705 (Online)

ISSN 2651-6691 (Print) | ISSN 2651-6705 (Online) | asianjournal.org

Automated Testing Tools for Mobile Applications: A

Literature Review

Jayson E. Tamayo

College of Computing Sciences

Pangasinan State University

jayson.tamayo2@gmail.com

Abstract - The rapid growth of demand for mobility made the mobile application development a

fast-emerging area in software development. As years pass by, the product of software development has

become increasingly complex. This makes test activities even more important and challenging. Tom Taulli,

a Forbes contributor, denotes the importance of mobile application testing. He stated that users are more

likely to abandon an application if it has functionality problems. Although there are several testing tools

already available in the market, there were no empirical studies found that explore and analyze these tools

in detail. Hence, this paper aims to discuss and provide a comparison of different cross-platform automated

testing tools for mobile applications particularly for Android, iOS and Windows Mobile. Most of the papers

were addressing test cases for app’s function and behavior. The least number of papers aims to test security

loopholes on mobile applications. It is worth noting that the papers focused on applications running on

Android devices, there were no tools that address applications for other platforms such as iOS and Windows

Phone.

Keywords: automated testing tool, mobile application

1 INTRODUCTION

Industry analyst firm Gartner predicts that by

2022, 70 percent of software interactions will

occur on mobile devices. Many organizations

embrace the fact that mobile application for their

business is an excellent way to keep their

consumers engaged as mobility becomes the

gateway to digital business. This drives a strong

demand for mobile application development.

Today, mobile applications have become more

complex and aside from the development

challenges, testing has also been an important

area to look into since this process ensures the

mobile application’s stability and robustness [1].

According to Tom Taulli, a Forbes contributor,

denotes the importance of mobile application

testing. He stated that users are more likely to

abandon an application if it has functionality

problems.

Many mobile applications have been developed

in critical areas such as transportation

[2][3][4][5][6][7][8][9], healthcare

[10][11][12][13][14][15][16][17], banking

[18][19][20] and education

[21][22][23][24][25][26]. Therefore, testing is a

fundamental life-cycle activity, with a huge

economical and societal impact if not performed

adequately [27].

The paper of Gunasekaran [28] surveyed five

different automated testing tools for mobile

applications. These tools are Robotium, Ranorex,

Appium, MonkeyTalk and UIAutomator. The

paper, however, failed to introduce automated

179

Asian Journal of Multidisciplinary Studies

Vol. 1, No. 2, (2018)
ISSN 2651-6691 (Print)

ISSN 2651-6705 (Online)

ISSN 2651-6691 (Print) | ISSN 2651-6705 (Online) | asianjournal.org

testing tools for all major mobile platforms

namely: Android, iOS and Windows Mobile. The

paper also failed to categorize these tools

according to the software engineering issues for

mobile application development [29] namely:

performance and reliability, function and

behavior and security.

This paper aims to discuss several automated

testing tools for mobile applications running on

Android, iOS and Windows Mobile. Each

automated testing tool shall also be categorized

and discussed according to what specific software

engineering issue it is trying to address.

The rest of the paper is organized as follows:

section 2 discusses the methodology to be used.

In section 3, results will be discussed. Finally,

section 4 concludes the paper and presents the

future work.

2 METHODOLOGY

This paper uses the Systematic Literature Review

(SLR) method in undertaking a systematic

literature review. By complying to the systematic

procedure defined by the said research method,

this paper can provide a more objective process

in selecting relevant and note-worthy studies. The

major steps in SLR include the following: (1)

defining a research question, (2) search strategy

for selecting studies and (3) management of

studies.

Using the SLR methodology, the author should

be able to define a research question that is

anchored to purpose of the literature review. The

author should also be able to plan for the search

strategy and specify the steps needed. Lastly, the

author should be able to manage the studies,

filtering the irrelevant studies and selecting the

pilot studies to be evaluated.

2.1 Defining a research question

This paper aims to identify automated testing

tools for mobile applications and defining a

research question is the initial step. The research

question will be the basis for the search strategy

and the selection of the pilot studies to be

evaluated.

2.2 Planning a search strategy

The initial step in planning a search strategy is

selecting the input data source. In this paper,

ACM Digital Library and Google Scholar will be

used as sources for the relevant studies. ACM

Digital Library and Google Scholar have been

chosen as the sources because these are the most

comprehensive database of full-text articles

covering computing and information technology.

The second step in our search strategy is to

construct a query based on the research question.

Keywords should be chosen carefully to maintain

the proper balance between specificity and

generality.

2.3 Managing the studies

After running the query in the ACM Digital

Library and Google Scholar, peer-reviewed

journals will be obtained. But there is a need for

each of the study to be assessed for its actual

relevance through inclusion criteria. Table 1

shows the inclusion criteria.

Table 1: Inclusion Criteria

No. Criterion Description

1 It should be

written in

English.

There are some studies

that are written in other

language. They have

provided English title

and abstract so these

papers will show up in

the search results. Only

180

Asian Journal of Multidisciplinary Studies

Vol. 1, No. 2, (2018)
ISSN 2651-6691 (Print)

ISSN 2651-6705 (Online)

ISSN 2651-6691 (Print) | ISSN 2651-6705 (Online) | asianjournal.org

studies written in

English will be included.

2 It should be

peer-

reviewed.

To ensure the quality of

this systematic literature

review, only peer-

reviewed studies will be

included.

3 The

publication

date must not

be earlier

than 2013.

To ensure that only up-

to-date energy-

efficiency solutions are

included, only studies

that were published in

the year 2013 onwards

are selected.

To furtherly filter the researches and articles,

abstract and conclusion of each study are

carefully examined. After selecting the pilot

studies to be evaluated, the studies will be ordered

and arranged according to these three areas in

which automated testing tools for mobile

applications are trying to address [33].

2.3.1 Performance and Reliability

Performance is a very critical area where mobile

applications should be tested [30]. When testing

the performance, it is usually measured in the

following categories: (1) Device Performance,

(2) Server/API Performance, and (3) Network

Performance.

Zhang et. Al. [30], furtherly subcategorized

the three (3) areas. For the device performance:

(1) Application startup – this is the amount of

time being spent by the app when loading for

the first time

(2) Battery usage – the amount of battery

consumed by the application while running

(3) Memory consumption – the amount of

memory being consumed by the application

while running

(4) Hardware/Software variations – the

application should be running smoothly

regardless of hardware and software

conditions

(5) App in background – when the application

is put in background and back to foreground

the same state should be retrieved

For Server/API Performance:

(1) Data transfer from and to the server – the

application must handle data transfers

efficiently

(2) Number of API calls – the less the number

of API calls in the application is better

(3) Server Downtime – the application must

be able to use a locally native database when

server is unreachable

For Network Performance:

(1) Jitters – in case of network jitters, the

application must handle the scrambled data

efficiently

(2) Packet loss – in case of a complete packet

loss, the app should be able to resend the

request

(3) Network speed – the app should be able to

run even

the network speed is slow

2.3.2 Function and Behavior

Function and behavior testing is an essential part

of mobile applications testing. Functionality

testing is used to validate the display of the

application’s content. Applications content can

be images, texts and graphics. It also verifies the

181

Asian Journal of Multidisciplinary Studies

Vol. 1, No. 2, (2018)
ISSN 2651-6691 (Print)

ISSN 2651-6705 (Online)

ISSN 2651-6691 (Print) | ISSN 2651-6705 (Online) | asianjournal.org

behavior of the application under all

circumstances.

2.3.3 Security

Concerning the privacy of personal and business

information stored on mobile devices, Security

testing include inspection of

inscription/decryption techniques used for

sensitive data. This testing also checks the

protection against security attacks that may come

from several means of communication like SMS,

MMS, WiFi, and Bluetooth, or from exploited

software vulnerabilities from both the web

browser and operating system.

3 RESULTS AND DISCUSSION

This section will discuss the results of each step

in the SLR methodology and later part will

discuss the selected pilot studies according to the

three areas of categorization.

3.1 Research question defined

This paper aims to answer the following question:

What are the automated testing tools for mobile

applications?

3.2 Results of the search strategy

Keywords were constructed from the research

question. These keywords will be used in the

search query in ACM Digital Library. The

following search query will be used: “automated

testing tool for mobile application”. Table 2

shows the number of search results per source:

Table 2: Number of search results per source

Search query

Number of

results (ACM

Digital

Library)

Number of

results

(Google

Scholar)

automated

testing tool for

mobile

application

411,941 951,000

3.3 Managing the studies

The search result for the first query has been

furtherly refined by publication year (>= 2013).

Table 3 shows the number of search results for

the given query.

Table 3: Search result for the query with

publication year is not earlier than 2013

Search query

Number of

results (ACM

Digital

Library)

Number of

results

(Google

Scholar)

automated

testing tool for

mobile

application

79,645 16,300

To furtherly filter the results, advanced search

feature has been used. The first where clause will

be on the Title field that matches all (compared to

matches any from the previous query) of the

following words or phrases: “automated testing

tool for mobile application”. The next where

clause will be on the field of Publication Year,

this is set to on or after (>=) 2015. The full query

syntax is as follows:

"query": { acmdlTitle:(+ automated +

testing + tool + mobile + application) }

"filter": {"publicationYear":{ "gte":2013

}}, {owners.owner=HOSTED}

182

Asian Journal of Multidisciplinary Studies

Vol. 1, No. 2, (2018)
ISSN 2651-6691 (Print)

ISSN 2651-6705 (Online)

ISSN 2651-6691 (Print) | ISSN 2651-6705 (Online) | asianjournal.org

The above query resulted to fewer matches. Table

4 shows the number of search results from the

query above.

Table 4: Search result for the query with

publication year is not earlier than 2013 and

query keywords matching the title

Search query

Number of

results (ACM

Digital

Library)

Number of

results

(Google

Scholar)

automated

testing tool for

mobile

application

186 41

To furtherly filter the results and finally select the

pilot studies, abstract and conclusion were read to

verify and assess the paper’s relevance to the

research question. Table 5 shows the final list of

pilot studies to be evaluated.

Table 5: Final list of researches with

publication year

No

.

Research Title Publicatio

n Year

1 MT4A: A No-

Programming Test

Automation Framework

for

Android Applications [31]

2016

2 Graph-Aided Directed

Testing of Android

Applications for

Checking Runtime Privacy

Behaviours [33]

2016

3 CrashScope: A Practical

Tool for Automated

Testing of Android

Applications [34]

2017

4 Poster: Framework for

Automated Power

Estimation of Android

Applications [36]

2013

5 DroidFuzzer: Fuzzing the

Android Apps with Intent-

Filter Tag [38]

2017

6 Security Testing of the

Communication among

Android Applications [39]

2013

7 Cloud-Based Mobile App

Testing Framework:

Architecture,

Implementation and

Execution [40]

2014

8 Fully Automated UI

Testing System for Large-

scale

Android Apps Using

Multiple Devices [41]

2017

9 Automating UI Tests for

Mobile Applications

with Formal Gesture

Descriptions [42]

2014

10 An Automated Testing

Approach for Inter-

application

Security in Android [43]

2014

11 Systematic Exploration of

Android Apps’ Events for

Automated Testing [44]

2016

12 UX Suite: A Touch Sensor

Evaluation Platform [45]

2016

Additionally, the studies were categorized

according to the main three areas of

categorization. Table 5 shows the categorized

studies:

Table 5: Categorized researches

Area Studies

Performanc

e and

reliability

[31][34][36][38][40][42][44][4

5]

183

Asian Journal of Multidisciplinary Studies

Vol. 1, No. 2, (2018)
ISSN 2651-6691 (Print)

ISSN 2651-6705 (Online)

ISSN 2651-6691 (Print) | ISSN 2651-6705 (Online) | asianjournal.org

Function

and

behavior

[31][41][34][38][40]

security [33][39][43]

The next sections will discuss the existing

automated tools for testing mobile applications

categorized by: performance and reliability,

function and behavior and security.

3.3.1 Performance and Reliability

MT4A is a no programming test automation

framework for Android applications created by

Coelho, et. A. [31]. The said tool are made for

individuals with no programming knowledge to

be involved in testing Android applications. The

proposed framework is mainly focused on testing

all types of sensors for applications that use them.

Their paper showed that users can use the

framework without any prior knowledge to

programming and that they can execute the tests

with a similar time compared with people with

programming skills. The authors also conducted

a sample test case. The app which was tested is a

fall detection app. The tool was able to test if the

device was really able to detect a fall or not.

However, this tool can only run tests on a single

device at a time. There is no option to run the

same test in multiple devices at the same time.

The tool does not also offer a collaborative

creation and editing of tests.

The tool presented by Moran, et. Al. [34], aims to

better support developers in mobile testing tasks.

The automated tool is called CrashScope. This

tool explores a given Android app using

systematic input generation, according to several

strategies informed by static and dynamic

analyses, with the intrinsic goal of triggering

crashes. When a crash is detected, CrashScope

generates an augmented crash report containing

screenshots, detailed crash reproduction steps,

the captured exception stack trace, and a fully

replayable script that automatically reproduces

the crash on a target device. In their paper, the

tool was able to uncover crashes about as many

crashes detected by some paid testing tools. The

tool was also able to record startup time of the

APK being tested. The tool is also able to test the

app contextually (e.g. turning mobile data).

In the paper of Lee and Kim [36], they proposed

a framework for automated power estimation for

Android apps. The key features of our framework

are as follows. First, in contrast to existing testing

tools, our framework allows market curator to test

apps without source code. Our framework

decompiles app installers (.apk files) using APK

Tools to obtain manifest.xml. Then, test scenarios

are generated which are composed of the android

component (activity, service, broadcast receiver,

and content provider) and permission data by

parsing manifest.xml file. Energy consumption is

estimated while running apps with the scenarios.

The process is performed as a black-box testing

with the generated scenario and Monkey, which

comes with the Android SDK. Second, our

framework enables market curator to automate

estimation of application power consumption.

Energy consumption is measured from the

current sensor on the phone or computed from the

pre-generated power on/off).

3.3.2 Function and Behavior

The CrashScope [34] tool which was also

discussed above, has a GUI ripping engine which

enables the tool to explore an app. It is able to

identify GUI or screen hierarchy, clickable, long-

clickable components of the app and text entry

controls. Text entry from the user is a major part

of functionality in many Android apps, the GUI

Ripping Engine employs a unique text input

generation mechanism. It detects the type of text

expected (e.g., phone number, email address,

184

Asian Journal of Multidisciplinary Studies

Vol. 1, No. 2, (2018)
ISSN 2651-6691 (Print)

ISSN 2651-6705 (Online)

ISSN 2651-6691 (Print) | ISSN 2651-6705 (Online) | asianjournal.org

age) by a text field, by querying the keyboard

type associated with the text field using the “adb

shell dumpsys input_method” command. Once

the type of expected input is detected, it employs

two heuristics to generate text inputs: expected

and unexpected. The expected heuristic generates

a string within keyboard parameters without any

punctuation or special characters, whereas the

unexpected heuristic generates random strings

with all of the allowable special characters for a

given keyboard type.

In the paper of Ye, et. Al., they proposed a fuzz

testing method to do the black box test of Android

apps and implemented an automated tool called

DroidFuzzer. The core of the tool is the variation

module which takes the normal data as the input

and generates abnormal data as test cases. Then

the test cases are sent to the target app and the

process is monitored for bug information. Typical

MIME data types are used to generate test cases.

Villanes Rojas, et. Al. [40] proposed a cloud-

based mobile app testing framework called AM-

TaaS. The AM-TaaS framework is focused on the

use of emulated devices due to the high cost to

acquire real devices and to perform the test on

many devices and automated test scripts as a way

to help on the time of execution of each test. The

tool aims to test if the defined functions of the app

are working correctly as intended.

When compared to other testing tools discussed

above, AutoClicker which was presented by Ki,

et. Al. [41], is the most suited for large-scale

Android app testing on multiple devices.

AutoClicker, a fully automated UI testing system

for large-scale Android apps using multiple

devices. It provides a way to quickly and easily

verify that a large number of Android apps

behave correctly at runtime in a repeatable

manner.

While other mobile testing tools were focused on

touch and press simulations, Hesenius, et. Al.

[42] proposed an extension to the Calabash

testing framework allowing for test automation

for gesture-based mobile applications.

3.3.3 Security

The paper of Keng, et. Al. [33], they presented

MAMBA, a directed testing system for checking

privacy in Android apps. MAMBA performs path

searches of user events in control-flow graphs of

callbacks generated from static analysis of app

bytecode. Based on the paths found, it builds test

cases comprised of user events that can trigger the

executions of the apps and quickly direct the

apps’ activity transitions from the starting activity

towards target activities of interest, revealing

potential accesses to privacy-sensitive data in the

apps. MAMBA’s backend testing engine then

simulates the executions of the apps following the

generated test cases to check actual runtime

behavior of the apps that may leak users’ private

data. By instrumenting privacy access/leak

detectors during testing, the tool was able to

verify from test logs that almost half of target

activities accessed user privacy data, and 26.7%

of target activities leaked privacy data to the

network.

In the paper of Avancini and Ceccato [39], they

presented a novel approach to test Android

applications. An automatic test case generation is

proposed to spot mismatches between the

intended behavior declared by an application and

the observed functionalities implemented in its

code. Their approach managed to detect

mismatches in three real world and largely used

Android applications and the tool automatically

generate JUnit test cases to reproduce potential

bugs. However, this tool only supports Eclipse-

created projects.

185

Asian Journal of Multidisciplinary Studies

Vol. 1, No. 2, (2018)
ISSN 2651-6691 (Print)

ISSN 2651-6705 (Online)

ISSN 2651-6691 (Print) | ISSN 2651-6705 (Online) | asianjournal.org

While other papers proposed tools to check if a

mobile application is secured, Guo, et. Al. [43]

introduced an inter-application security

mechanism in Intent category components

(Activity, Broadcast Receiver and Service) and

Content Provider. A novel approach is presented,

including a detection module and a checking

module, to detect the vulnerabilities existing in

Android inter-application components.

4 CONCLUSION

In this paper, several automated testing tools for

mobile applications were discussed. The papers

were subcategorized by (1) Performance and

Reliability, (2) Function and Behavior, and (3)

Security. Most of the papers found were

addressing the test cases for performance and

reliability. While five (5) papers were addressing

test cases for app’s function and behavior. The

least number of papers aims to test security

loopholes on mobile applications. It is worth

noting that the papers focused on applications

running on Android devices, there were no tools

that address applications for other platforms such

as iOS and Windows Phone.

REFERENCES

[1] Nagowah, L., & Sowamber, G. (2012,

June). A novel approach of automation

testing on mobile devices. In Computer &

Information Science (ICCIS), 2012

International Conference on (Vol. 2, pp. 924-

930). IEEE.

[2] Froehlich, J., Dillahunt, T., Klasnja, P.,

Mankoff, J., Consolvo, S., Harrison, B., &

Landay, J. A. (2009, April). UbiGreen:

investigating a mobile tool for tracking and

supporting green transportation habits. In

Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (pp.

1043-1052). ACM.

[3] Rayle, L., Shaheen, S., Chan, N., Dai, D., &

Cervero, R. (2014). App-based, on-demand

ride services: Comparing taxi and

ridesourcing trips and user characteristics in

san francisco university of california

transportation center (uctc). University of

California, Berkeley, United States Rogers,

B.(2015) The social costs of Uber. James E.

Beasley School of Law, Temple University,

Philadelphia, United States.

[4] Wang, T., Cardone, G., Corradi, A.,

Torresani, L., & Campbell, A. T. (2012,

February). WalkSafe: a pedestrian safety app

for mobile phone users who walk and talk

while crossing roads. In Proceedings of the

twelfth workshop on mobile computing

systems & applications (p. 5). ACM.

[5] Gavin, M., Ghosh, B., Pakrashi, V., Barton,

J., O'Flynn, B., & Lawson, A. (2011). A

cycle route planner mobile-app for Dublin

city. In Irish Transportation Research

Network Conference (ITRN2011), 31 Aug-1

Sep 2011, University College Cork, Cork,

Ireland.. Irish Transportation Research

Network.

[6] Stockx, T., Hecht, B., & Schöning, J. (2014,

November). SubwayPS: towards smartphone

positioning in underground public

transportation systems. In Proceedings of the

22nd ACM SIGSPATIAL International

Conference on Advances in Geographic

Information Systems (pp. 93-102). ACM.

[7] Vieira, V., Salgado, A. C., Tedesco, P.,

Times, V., Ferraz, C., Huzita, E., ... &

Steinmacher, I. (2012). The UbiBus project:

Using context and ubiquitous computing to

build advanced public transportation systems

to support bus passengers. Anais do VIII

Simpósio Brasileiro de Sistemas de

Informação, 7.

[8] Navarro, K. F., Gay, V., Golliard, L.,

Johnston, B., Leijdekkers, P., Vaughan, E., ...

& Williams, M. A. (2013, October).

SocialCycle what can a mobile app do to

encourage cycling?. In Local Computer

Networks Workshops (LCN Workshops),

2013 IEEE 38th Conference on (pp. 24-30).

IEEE.

[9] Broll, G., Cao, H., Ebben, P., Holleis, P.,

Jacobs, K., Koolwaaij, J., ... & Souville, B.

(2012, December). Tripzoom: an app to

improve your mobility behavior. In

186

Asian Journal of Multidisciplinary Studies

Vol. 1, No. 2, (2018)
ISSN 2651-6691 (Print)

ISSN 2651-6705 (Online)

ISSN 2651-6691 (Print) | ISSN 2651-6705 (Online) | asianjournal.org

Proceedings of the 11th international

conference on mobile and ubiquitous

multimedia (p. 57). ACM.

[10] Boulos, M. N. K., Brewer, A. C.,

Karimkhani, C., Buller, D. B., & Dellavalle,

R. P. (2014). Mobile medical and health

apps: state of the art, concerns, regulatory

control and certification. Online journal of

public health informatics, 5(3), 229.

[11] Turner-McGrievy, G. M., Beets, M. W.,

Moore, J. B., Kaczynski, A. T., Barr-

Anderson, D. J., & Tate, D. F. (2013).

Comparison of traditional versus mobile app

self-monitoring of physical activity and

dietary intake among overweight adults

participating in an mHealth weight loss

program. Journal of the American Medical

Informatics Association, 20(3), 513-518.

[12] Akinyele, J. A., Pagano, M. W., Green,

M. D., Lehmann, C. U., Peterson, Z. N., &

Rubin, A. D. (2011, October). Securing

electronic medical records using attribute-

based encryption on mobile devices. In

Proceedings of the 1st ACM workshop on

Security and privacy in smartphones and

mobile devices (pp. 75-86). ACM.

[13] Aungst, T. D. (2013). Medical

applications for pharmacists using mobile

devices. Annals of Pharmacotherapy, 47(7-

8), 1088-1095.

[14] Payne, K. F. B., Wharrad, H., & Watts,

K. (2012). Smartphone and medical related

App use among medical students and junior

doctors in the United Kingdom (UK): a

regional survey. BMC medical informatics

and decision making, 12(1), 121.

[15] Aungst, T. D., Clauson, K. A., Misra, S.,

Lewis, T. L., & Husain, I. (2014). How to

identify, assess and utilise mobile medical

applications in clinical practice. International

journal of clinical practice, 68(2), 155-162.

[16] Krebs, P., & Duncan, D. T. (2015).

Health app use among US mobile phone

owners: a national survey. JMIR mHealth

and uHealth, 3(4).

[17] Semple, J. L., Sharpe, S., Murnaghan,

M. L., Theodoropoulos, J., & Metcalfe, K. A.

(2015). Using a mobile app for monitoring

post-operative quality of recovery of patients

at home: a feasibility study. JMIR mHealth

and uHealth, 3(1).

[18] de Reuver, M., Verschuur, E., Nikayin,

F., Cerpa, N., & Bouwman, H. (2015).

Collective action for mobile payment

platforms: A case study on collaboration

issues between banks and telecom operators.

Electronic Commerce Research and

Applications, 14(5), 331-344.

[19] Bons, R. W., Alt, R., Lee, H. G., &

Weber, B. (2012). Banking in the Internet

and mobile era. Electronic Markets, 22(4),

197-202.

[20] Jones, W. (2014). M-commerce:

Building the opportunity for banks. Journal

of Payments Strategy & Systems, 8(3), 300-

306.

[21] Chen, B., & Denoyelles, A. (2013).

Exploring students’ mobile learning practices

in higher education. Educause Review, 7.

[22] Shuler, C. (2009). iLearn: A content

analysis of the iTunes app Store's education

section. onference P, 149.

[23] Rossing, J. P., Miller, W. M., Cecil, A.

K., & Stamper, S. E. (2012). iLearning: The

future of higher education? Student

perceptions on learning with mobile tablets.

Journal of the Scholarship of Teaching and

Learning, 12(2), 1-26.

[24] Vázquez-Cano, E. (2014). Mobile

distance learning with smartphones and apps

in higher education. Educational Sciences:

Theory and Practice, 14(4), 1505-1520.

[25] Mehdipour, Y., & Zerehkafi, H. (2013).

Mobile learning for education: Benefits and

challenges. International Journal of

Computational Engineering Research, 3(6),

93-101.

[26] Hsu, Y. C., Rice, K., & Dawley, L.

(2012). Empowering educators with Google's

Android App Inventor: An online workshop

in mobile app design. British Journal of

Educational Technology, 43(1).

[27] Tassey, G. (2002). The economic

impacts of inadequate infrastructure for

software testing. National Institute of

Standards and Technology, RTI Project,

7007(011).

187

Asian Journal of Multidisciplinary Studies

Vol. 1, No. 2, (2018)
ISSN 2651-6691 (Print)

ISSN 2651-6705 (Online)

ISSN 2651-6691 (Print) | ISSN 2651-6705 (Online) | asianjournal.org

[28] Gunasekaran, S., & Bargavi, V. (2015).

Survey on automation testing tools for

mobile applications. International Journal of

Advanced Engineering Research and

Science, 2(11), 2349-6495.

[29] Wasserman, A. I. (2010, November).

Software engineering issues for mobile

application development. In Proceedings of

the FSE/SDP workshop on Future of

software engineering research (pp. 397-400).

ACM.

[30] Zhang, Dongsong, and Boonlit Adipat.

"Challenges, methodologies, and issues in the

usability testing of mobile applications."

International journal of human-computer

interaction 18.3 (2005): 293-308.

[31] Coelho, T., Lima, B., & Faria, J. P. (2016,

November). MT4A: a no-programming test

automation framework for Android

applications. In Proceedings of the 7th

International Workshop on Automating Test

Case Design, Selection, and Evaluation (pp.

59-65). ACM.

[32] Holzmann, C., & Hutflesz, P. (2014,

December). Multivariate Testing of Native

Mobile Applications. In Proceedings of the

12th International Conference on Advances

in Mobile Computing and Multimedia (pp.

85-94). ACM.

[33] Keng, J. C. J., Jiang, L., Wee, T. K., &

Balan, R. K. (2016, May). Graph-aided

directed testing of android applications for

checking runtime privacy behaviours. In

Automation of Software Test (AST), 2016

IEEE/ACM 11th International Workshop in

(pp. 57-63). IEEE.

[34] Moran, K., Linares-Vásquez, M., Bernal-

Cárdenas, C., Vendome, C., & Poshyvanyk,

D. (2017, May). Crashscope: A practical tool

for automated testing of android applications.

In Software Engineering Companion (ICSE-

C), 2017 IEEE/ACM 39th International

Conference on (pp. 15-18). IEEE.

[35] Coles, H., Laurent, T., Henard, C.,

Papadakis, M., & Ventresque, A. (2016,

July). PIT: a practical mutation testing tool

for java. In Proceedings of the 25th

International Symposium on Software

Testing and Analysis (pp. 449-452). ACM.

[36] Lee, J., & Kim, H. (2013, June).

Framework for automated power estimation

of android applications. In Proceeding of the

11th annual international conference on

Mobile systems, applications, and services

(pp. 541-542). ACM.

[37] de Cleva Farto, G., & Endo, A. T. (2017,

September). Reuse of model-based tests in

mobile apps. In Proceedings of the 31st

Brazilian Symposium on Software

Engineering (pp. 184-193). ACM.

[38] Ye, H., Cheng, S., Zhang, L., & Jiang, F.

(2013, December). Droidfuzzer: Fuzzing the

android apps with intent-filter tag. In

Proceedings of International Conference on

Advances in Mobile Computing &

Multimedia (p. 68). ACM.

[39] Avancini, A., & Ceccato, M. (2013, May).

Security testing of the communication among

Android applications. In Proceedings of the

8th International Workshop on Automation

of Software Test (pp. 57-63). IEEE Press.

[40] Rojas, I. K. V., Meireles, S., & Dias-Neto,

A. C. (2016, September). Cloud-Based

Mobile App Testing Framework:

Architecture, Implementation and Execution.

In Proceedings of the 1st Brazilian

Symposium on Systematic and Automated

Software Testing (p. 10). ACM.

[41] Ki, T., Simeonov, A., Park, C. M., Dantu,

K., Ko, S. Y., & Ziarek, L. (2017, June).

Fully Automated UI Testing System for

Large-scale Android Apps Using Multiple

Devices. In Proceedings of the 15th Annual

International Conference on Mobile Systems,

Applications, and Services (pp. 185-185).

ACM.

[42] Hesenius, M., Griebe, T., Gries, S., &

Gruhn, V. (2014, September). Automating UI

tests for mobile applications with formal

gesture descriptions. In Proceedings of the

16th international conference on Human-

computer interaction with mobile devices &

services (pp. 213-222). ACM.

[43] Guo, C., Xu, J., Yang, H., Zeng, Y., &

Xing, S. (2014, May). An automated testing

approach for inter-application security in

Android. In Proceedings of the 9th

188

Asian Journal of Multidisciplinary Studies

Vol. 1, No. 2, (2018)
ISSN 2651-6691 (Print)

ISSN 2651-6705 (Online)

ISSN 2651-6691 (Print) | ISSN 2651-6705 (Online) | asianjournal.org

International Workshop on Automation of

Software Test (pp. 8-14). ACM.

[44] Salihu, I. A., & Ibrahim, R. (2016,

November). Systematic Exploration of

Android Apps' Events for Automated

Testing. In Proceedings of the 14th

International Conference on Advances in

Mobile Computing and Multi Media (pp. 50-

54). ACM.

189

