
Asian Journal of Multidisciplinary Studies

Vol. 4, No. 2, (2021)

ISSN 2651-6691 (Print)

ISSN 2651-6705 (Online)

ISSN 2651-6691 (Print) | ISSN 2651-6705 (Online) | asianjournal.org

NoSQL: An Optimization Approach in a Stand-Alone

System

Reynan Anislag1, Jay C. Rico2
1University of the Philippines-Diliman

 2Pangasinan State University

Abstract - With some limiting factors of SQL databases, the NoSQL has been studied and is now

a popular database that is being used by the largest companies in the world like Facebook and Google to

work with the unstructured big data that they collect and manage every day. In a stand-alone application

like the payroll system, the use of SQL databases also becomes a struggle especially when the collected

data are growing rapidly. The normalization or query optimization has a little advantage while NoSQL

solved this problem in a much better performance. In the new model, the NoSQL (MongoDB) database

was designed to work with the transactional data, specifically during the read phase which must be taken

from the transactional table. On the other hand, SQL (MySQL) database still works on the other tables

that have stable attributes. The test was performed by using a stand-alone system over the usual

application of NoSQL databases like the online distributed systems. The combined SQL and NoSQL

databases conveyed significant results than that of the SQL database alone in terms of performance. It is

evident that NoSQL works well with SQL. NoSQL would have been one of the best options to optimize the

performance of the system. This is not only perfectly working with unstructured data in distributed systems

but also bears a big advantage when applied to stand-alone systems especially when it collects and

manages large volume of data.

Keywords - NoSQL and SQL databases, MongoDB and MySQL, transactional table and data,

optimization, polyglot database structure

1 Introduction

Database is very important to any computer systems and

applications. It houses the data which is very important

to keep for future references and use. The organization

of data in databases is pivotal since storing and

accessing data to and from it will be affected. SQL

databases have proven its efficiency for more than

decades now. However, NoSQL databases surfaced

because of some limitations that SQL cannot handle

efficiently.

The Westminn Construction Corporation has been using

the Computerized Payroll System since April 2013.

Currently, they prepare their payroll for around 500

employees on a weekly basis. Their payroll system has

been implemented using MySQL as its database.

Unfortunately, their payroll transaction becomes slower

as the number of records in the database increases.

Relational databases such as MySQL are encountering

some limitations due to the unstoppable growth and

behavior of data such as the retrieval and management

of big databases [1].

According to [2], NoSQL is the new darling of the big

data world. It came out to support what SQL databases

can’t or

barely handle with regards to the current characteristics

of data. NoSQL systems store and manage data in ways

that allow for high operational speed and great

flexibility on the part of the developers [3]. SQL and

NoSQL databases have been at issue of which one is the

best database to use. As a result, to this discourse,

95

Asian Journal of Multidisciplinary Studies

Vol. 4, No. 2, (2021)

ISSN 2651-6691 (Print)

ISSN 2651-6705 (Online)

ISSN 2651-6691 (Print) | ISSN 2651-6705 (Online) | asianjournal.org

several applications tried using them both instead

because of their unique advantages. Commonly, NoSQL

databases have been implemented with systems that

have unstructured data and the performance is notable.

This type of data has been always seen in the online

distributed systems such as Facebook, Google and the

like where most of the research have shown the strengths

of the NoSQL. In contrary, this paper explained how

NoSQL is relevant in optimizing the database

performance of the stand-alone applications such as the

computerized payroll system of Westminn Construction

Corporation. The new model used the NoSQL database

to the structured data but with a highly increasing data

while implementing SQL database to the other data to

speed up the processing time of the payroll transaction.

The researchers used MySQL (SQL) and MongoDB

(NoSQL) as the databases and used VB.Net as the

system’s programming language.

2 Review of Related Literature

NoSQL’s real motivator is “Big Data” - it is a term that

describes the large volume of data both structured and

unstructured that inundates a business on a day-to-day

basis [4]. NoSQL database is a perfect match with

systems that have large volume of data. Due to its

schema less structure and its capability to store all the

data in one place using the document-based databases

such as MongoDB, the access of data becomes seamless

and fast.

MongoDB is mostly closed to the relational use cases

scenario. It is perfectly aligned for reliability, durability

and read-oriented use cases among other popular

NoSQL databases. NoSQL databases are commonly

divided into read and write optimization categories.

MongoDB takes advantage on an optimized read side

which is the problem with relational databases because

data loading and organization become its bottleneck [5].

MongoDB support is not a big problem anymore since

there are many research communities now arising for

those who are interested with the NoSQL databases.

[6] used the write-side and read-side databases in his

application. The write-side database used the relational

SQL database because of its high support to data

integrity while in the read-side database, the NoSQL

database was used because of its support to speed and

scalability. The write-side performs writing on the SQL

and also feeding the data to the NoSQL that is ready to

be displayed on the user. This is what he called the

CQRS architecture using a polyglot database structure

which is very essential to businesses that require more

reads than writes.

The Sage Group has also already integrated MongoDB

into their latest release of Enterprise Resource Planning

solutions with a more fulfilling customer experience. It

makes the ERP solutions adaptive to the changes and

encourages innovation in the future for more

competitive software products [7].

This research had focused on the real application of

NoSQL specifically in the online and distributed

systems with unstructured data where in fact, NoSQL

could be also a good choice to be implemented in stand-

alone systems with highly increasing data. But since

NoSQL has its own limitations as well, combining it to

SQL database is a better choice.

3 Methodology

3.1 The Existing Model

Figure 1. It shows the existing flow of a process when

the user interacts with the Transaction module of the

application.

The life cycle of a process in the existing system

demonstrates the usual flow of a query.

As displayed in Figure 1, the process starts when a user

makes a request through the User Interface. Doing so,

the application creates a Data Transfer Object (DTO).

This is when the end user hits the Transaction button on

the application. Consequently, the following events are

executed.

User
Interface

96

Asian Journal of Multidisciplinary Studies

Vol. 4, No. 2, (2021)

ISSN 2651-6691 (Print)

ISSN 2651-6705 (Online)

ISSN 2651-6691 (Print) | ISSN 2651-6705 (Online) | asianjournal.org

First, the SQL query is dynamically built on the

application itself. Its dynamic behavior depends on the

passed parameters. On the existing setup, the default

parameters’ intention is to get the current transactions

that are created on a per day basis. The created DTO

serves as the parameter of the request. The application

then manipulates the DTO to form an SQL command.

This command together with the DTO constitutes the

Write Domain Model.

After producing the said model, the application sends it

to MySQL to fetch the filtered records according to the

set parameters. [8] is responsible for passing and writing

the said command on MySQL. The application waits

while the query is being executed on the database. The

existing codes showed that waiting is synchronous. It

must get a response from MySQL first before it

continues to execute the remaining lines of code.

Additionally, the application used the default 30 second

timeout before it issues a timeout error.

Once the application already gets a response from

MySQL, each record in the result set is iterated. Each

iteration means an insert to the list view control on the

application. This process shows how the application

encapsulates the resulting query back into a DTO so that

it can be translated properly to the User Interface. At the

same time, the user can understand the results on his end.

3.2 The New Model

Figure 2. It shows the new flow of a process using

the proposed optimization technique.

In the new model, the life cycle of a process as shown in

Figure 2 is the same except that the Write Domain

Model is now passed to a new database, MongoDB.

Unlike the existing model, this new model has two data

resources involved. MySQL which contains the master

data and MongoDB which contains the transactional

data are utilized on this proposed optimization

technique. Series of existing events are revised which

considers the overhead in fetching the isolated

transactional data from an additional database resource.

The user makes a request through the User Interface

once the Transaction button is clicked. The application

still generates a dynamic SQL query. This time, the

query statement does not include the transactional table

since transactional data is already transferred to

MongoDB.

The request is translated into a DTO to be used in

executing a command. This serves as a parameter to the

generated query statement. The Write Domain Model

created from here using the command is written and sent

by the application to NoSQL where all transactional

requests are saved.

As soon as the request gets executed, an additional event

that is to fetch the current transactions generated for the

day from MongoDB is executed. This behavior is the

counterpart of the default parameters’ intention that is

discussed in the existing model. MongoDB’s result set

is saved in a collection which will be used later. This is

to make sure that we only have a single database hit for

this purpose.

At this point in time, we already have the result sets of

both MySQL and MongoDB. MySQL holds the master

data (employee list) while MongoDB holds the

transactions (computed salary) created for the day.

Iteration on the master data comes next. Each iteration

97

Asian Journal of Multidisciplinary Studies

Vol. 4, No. 2, (2021)

ISSN 2651-6691 (Print)

ISSN 2651-6705 (Online)

ISSN 2651-6691 (Print) | ISSN 2651-6705 (Online) | asianjournal.org

means searching data from the said MongoDB generated

collection. Whether a matching data is found or not, it

also means an insert to the listview control on the

application. When there is a matching data, the last few

columns of the list view control are filled with the data

from the collection. Otherwise, the application will

leave these columns empty.

In a nutshell, the application takes good care in joining

the data. And the joined data is formed to match the

existing DTO so that this proposed optimization still

matches the existing User Interface where end users

interact with the system.

3.3 The Existing Database Query

SELECT oel.ID_NUMBER,

 oel.LAST_NAME,

 oel.FIRST_NAME,

 ojl.JOB_DESCRIPTION,

 oec.RATE_PER_DAY,

 otl.NUM_OF_DAYS,

 otl.NUM_OF_OT_HOURS,

 otl.SALARY

FROM OIC_EMPLOYEE_LIST oel

 INNER JOIN OIC_EMPLOYEE_CROSSREF

AS oec

 ON oec.EMPLOYEE_ID =

oel.ID_NUMBER

 AND oec.EMP_STAT = '1'

 INNER JOIN OIC_SITE_LIST AS osl

 ON osl.SITE_ID = oec.SITE_ID

 INNER JOIN OIC_JOB_LIST AS ojl

 ON ojl.JOB_CODE = oec.JOB_CODE

 LEFT JOIN

OIC_TRANSACTION_LIST_COPY otl

 ON otl.EMPLOYEE_ID =

oel.ID_NUMBER

 AND CAST(otl.TRANS_DATE AS

date) = CAST(NOW() AS date)

WHERE oel.ID_NUMBER LIKE '%%'

 AND oel.LAST_NAME LIKE '%%'

 AND osl.SITE_DESC LIKE '%'

ORDER BY oel.ID_NUMBER

LIMIT 500

The existing database query has been the subject for

optimization. Upon evaluation, the application always

considers five tables in generating the query. These

tables are the following:

● OIC_EMPLOYEE_LIST – Main table. This

contains the list of employee details.

● OIC_EMPLOYEE_CROSSREF – It is an

extension of the main table that contains the

payroll related fields. These fields are

referencing to other tables like site and group

number IDs.

● OIC_SITE_LIST – It is the source of site

names, and it is also used for filtering sites.

● OIC_JOB_LIST – It is the source of job

descriptions, and it is also used for filtering jobs.

● OIC_TRANSACTION_LIST – It is the

source of transactions including its historical

data. It is filtered to current day on the query.

OIC_EMPLOYEE_CROSSREF, OIC_SITE_LIST and

OIC_TRANSACTION_LIST have one-to-one

relationship to OIC_EMPLOYEE_LIST . Thus, these are

[9] INNER JOIN’ed to the main table using their

primary keys such as EMPLOYEE_ID, SITE_ID and

JOB_ID respectively. Aside from filtering the primary

key, OIC_EMPLOYEE_CROSSREF is added with an

additional condition that is to get active employees only.

Moreover, OIC_TRANSACTION_LIST is [10] LEFT

JOIN’ed to the main table using the EMPLOYEE_ID as

the primary key. Since this contained the transactions

created for the day including the historical data or

transactions created previously, the filter must include

an additional condition which is to get the current

transaction out from the transactions created for an

employee since the start of his stay in the company. The

attachment of this transactional table to the main table

provides an expensive process by querying from a large

table on an employee-based filtering.

3.4 The New Database Query

SELECT oel.ID_NUMBER,

 oel.LAST_NAME,

 oel.FIRST_NAME,

 ojl.JOB_DESCRIPTION,

98

Asian Journal of Multidisciplinary Studies

Vol. 4, No. 2, (2021)

ISSN 2651-6691 (Print)

ISSN 2651-6705 (Online)

ISSN 2651-6691 (Print) | ISSN 2651-6705 (Online) | asianjournal.org

 oec.RATE_PER_DAY

FROM OIC_EMPLOYEE_LIST oel

 INNER JOIN OIC_EMPLOYEE_CROSSREF

AS oec

 ON oec.EMPLOYEE_ID =

oel.ID_NUMBER

 AND oec.EMP_STAT = '1'

 INNER JOIN OIC_SITE_LIST AS osl

 ON osl.SITE_ID = oec.SITE_ID

 INNER JOIN OIC_JOB_LIST AS ojl

 ON ojl.JOB_CODE = oec.JOB_CODE

WHERE oel.ID_NUMBER LIKE '%%'

 AND oel.LAST_NAME LIKE '%'

 AND osl.SITE_DESC LIKE '%'

ORDER BY oel.ID_NUMBER

LIMIT 500

The existing database query has been revised to remove

the connection of OIC_TRANSACTION_LIST table to

other tables. This means that the non-transactional tables

are kept as they are. Same primary keys are still used as

reference keys to the main table.

The assumption of having the new database query is

that, the historical data from the transactional table

which is OIC_TRANSACTION_LIST is already

exported to MongoDB. Furthermore, the system has to

issue a query to this database aside from executing a

separate MySQL query in order to get the transactional

details on a per employee basis. (See Figure 3). It may

sound expensive also but MongoDB by its nature, will

take care of the performance in doing so.

Figure 3. It shows the codes on how the transactions

are fetched from MongoDB. The results are put in a

collection list or a hash table afterwards.

Once the application issues a query to get transaction

details for an employee, it will create a [11] query

document, a JSON formatted query whose Sort and

Filter operations are defined first. These are then

attached to a Find operation. The Find, Filter and Sort

correspond to SELECT, WHERE and ORDER BY

clauses in MySQL respectively. This query document

then gets executed in MongoDB.

4 Results and Discussions

During the data gathering phase, researchers had

extracted the current records of the company's database.

It was found out that based on the last database

extraction that contains six-month worth of data, 58% of

the company's MySQL database comprises the

transactional data which is rapidly growing. This is

because the company had been processing the payroll

every week. Weekly processing means a production of

a record for every employee. Around 500 records are

created every week for the transactional table while

other tables are dependent to the incoming and outgoing

employees to and from the company. The transactional

table has the following attributes:

These data are structured. However, the problem is that

the transactional table always becomes almost full even

in a short span of time. Approximately, there are

currently 500 employees which corresponds to 500

payroll transactional data per week. On the following

week, another 500 records will be created which are

stored on the same table which means that there is a total

of 1000 records available in the database. This follows

that the number of records in the transactional table is

growing by: where x=500 and i=1 corresponds

TRA

NS_ID

EMP

LOY

EE_I

D

NUM_O

F_DAY

S

NUM_OF

_OT_HO

URS

SA

LA

RY

TRA

NS_D

ATE

99

Asian Journal of Multidisciplinary Studies

Vol. 4, No. 2, (2021)

ISSN 2651-6691 (Print)

ISSN 2651-6705 (Online)

ISSN 2651-6691 (Print) | ISSN 2651-6705 (Online) | asianjournal.org

to a week. This is voluminous which makes the read of

the data from the database slow.

The current model uses a query statement that is joining

every related table. During the analysis phase, the

researchers realized that the transactional table has data

that is quite huge and grows at a great rate. What makes

it poor is that the transactional table is used as a sub table

in the query statement. An additional performance

overhead on filtering from the transactional table before

it joins with the main table makes it expensive on the

entirety of the query execution.

The new model minimized the performance overhead by

removing the transactional table from the existing query

statement. A significant increase in the performance is

noticed during the query execution. Since transactional

table is exported to MongoDB, a procedure in getting

the transactional data is added to the existing flow.

Performance wise, this procedure adds up performance

overhead but the summation of performance in using

both databases is still faster than the existing scenario

which is using MySQL alone. The application writes a

BSON (Binary JSON) query document and passed it to

MongoDB. And by MongoDB's NoSQL nature, the

execution is quite impressive. Moreover, the application

takes only a single database hit. The result of the query

document is saved on the memory through collection

document so that during iteration of master data,

reconciliation of its transactional records would only

access the memory which is all we know that it is faster

than performing another MongoDB hit for every master

datum. It only requires linear time in accessing the

transactional data since we already have a collection or

a hash table.

4.1 Comparative Results of the Response Time

using MySQL and MySQL+NoSQL Databases

Figure 4. It shows the comparison of response times

generated from executing the query and the

application of both implementations. One is using

MySQL database alone and the other one is using

both MySQL and NoSQL databases.

The existing application that harnessed MySQL

database alone depicted an expensive database

utilization. As shown, both query and application

performance took at least a second in performing a task.

As the number of records increases, the execution time

increases significantly. This means that as the payroll is

performed over the year, end users will suffer much on

this behavior.

In the proposed optimization technique, a remarkable

enhancement on the performance was recorded.

According to the figure, the time frame and the number

of transactions do not necessarily affect the response

time. All rows

Compared to the existing implementation, the row with

the least number of transactions recorded more than a

second response time while the average response time

of the proposed implementation still runs in less than

half a second. This only means that the optimization was

effective as the performance remained consistent across

the given number of transactions. Unlike the existing

one, the increase of response time is very much

noticeable as the number of records increases. This

registered an average of 12 second response time.

100

Asian Journal of Multidisciplinary Studies

Vol. 4, No. 2, (2021)

ISSN 2651-6691 (Print)

ISSN 2651-6705 (Online)

ISSN 2651-6691 (Print) | ISSN 2651-6705 (Online) | asianjournal.org

5 Conclusion

Even in the stand-alone systems, a great growth rate of

data in SQL databases becomes a bottleneck in the

performance of the system. This means that SQL alone

could not do the work well done anymore. This has been

an observation from the payroll system in which we

thought it is a small system but rather becomes bigger in

terms of the transactional data it generates and collects.

As a solution, the researchers considered separating the

transactional records from MySQL which is causing the

application to perform very slow. Additionally, a

NoSQL MongoDB database, a free and open-source

cross-platform document-oriented NoSQL database has

been selected to be used as a database for the

transactional records of the system because of its high

scalability and a best fit for Big Data related projects. A

comparative analysis of the response time of data that

are produced with the existing implementation that used

MySQL alone and with the new implementation that

used both MySQL and NoSQL databases shown from

the results that the idea on a polyglot (integrating

different databases into one system) type of a database

structure as an optimization approach to stand-alone

system is highly recommended. This affirmed that the

use of NoSQL and MySQL databases combined in a

stand-alone system was also benefitted and it is not only

to be used with the unstructured data and online

distributed systems.

registered less than half a second response time.

101

Asian Journal of Multidisciplinary Studies

Vol. 4, No. 2, (2021)

ISSN 2651-6691 (Print)

ISSN 2651-6705 (Online)

ISSN 2651-6691 (Print) | ISSN 2651-6705 (Online) | asianjournal.org

References

[1.] Shetty, Deepika V. and Chidimar, Sana J. (2016).

Comparative Study of SQL and NoSQL

Databases to evaluate their suitability for Big

Data Application. International Journal of

Computer Science and Information Technology

Research ISSN 2348-120X (online) Vol. 4, Issue

2, pp: (314-318). www.researchpublish.com

[2.] Bhatia, Richa (2017). NoSQL vs. SQL - Which

Database Type if Better for Big Data

Applications. Analytics India Magazine.

https://analyticsindiamag.com/nosql-vs-sql-

database-type-better-big-data-applications/

[3.] Yegulalp, Serdar (2017). What is NoSQL?

NoSQL databases explained. InfoWorld.com.

https://www.infoworld.com/article/3240644/nos

ql/what-is-nosql-nosql-databases-explained.html

[4.] Ashwinii, Amit (2017). Should You Use NoSQL

or SQL Db or Both.

https://www.cognitiveclouds.com/insights/shoul

d-you-use-a-nosql-db-sql-database-or-both/

[5.] Lourenco, Joao Ricardo et. al. (2015). NoSQL

Databases: A Software Engineering Perspective.

Advances in Intelligent Systems and Computing

353:741-750 DOI 10.1007/978-3-319-16486-

1_73

[6.] Smith, Jon P. (2017). EF Core – Combining SQL

and NoSQL databases for better performance.

https://www.thereformedprogrammer.net/ef-

core-combining-sql-and-nosql-databases-for-

better-performance/

[7.] www.mongodb.com. Sage Upgrades Sage ERP

X3 Experience with MongoDB.

https://www.mongodb.com/press/sage-upgrades-

sage-erp-x3-experience-mongodb

[8.] Microsoft Developer Network.

OdbcDataAdapter Class.

https://msdn.microsoft.com/en-

us/library/system.data.odbc.odbcdataadapter(v=v

s.110).asx

[9.] w3resource. What is INNER JOIN in MySQL?

https://www.w3resource.com/mysql/advance-

query-in-mysql/inner-join-with-multiple-

tables.php

[10.] w3resource. What is LEFT JOIN in MySQL?

https://www.w3resource.com/mysql/advance-

query-in-mysql/left-join.php

[11.] mongoDB|Documentation. Query Documents

https://docs.mongodb.com/manual/tutorial/query

-documents/

102

http://www.researchpublish.com/
https://analyticsindiamag.com/nosql-vs-sql-database-type-better-big-data-applications/
https://analyticsindiamag.com/nosql-vs-sql-database-type-better-big-data-applications/
https://www.infoworld.com/article/3240644/nosql/what-is-nosql-nosql-databases-explained.html
https://www.infoworld.com/article/3240644/nosql/what-is-nosql-nosql-databases-explained.html
https://www.cognitiveclouds.com/insights/should-you-use-a-nosql-db-sql-database-or-both/
https://www.cognitiveclouds.com/insights/should-you-use-a-nosql-db-sql-database-or-both/
https://www.thereformedprogrammer.net/ef-core-combining-sql-and-nosql-databases-for-better-performance/
https://www.thereformedprogrammer.net/ef-core-combining-sql-and-nosql-databases-for-better-performance/
https://www.thereformedprogrammer.net/ef-core-combining-sql-and-nosql-databases-for-better-performance/
https://www.mongodb.com/press/sage-upgrades-sage-erp-x3-experience-mongodb
https://www.mongodb.com/press/sage-upgrades-sage-erp-x3-experience-mongodb
https://msdn.microsoft.com/en-us/library/system.data.odbc.odbcdataadapter(v=vs.110).aspx
https://www.w3resource.com/mysql/advance-query-in-mysql/left-join.php
https://www.w3resource.com/mysql/advance-query-in-mysql/left-join.php
https://docs.mongodb.com/manual/tutorial/query-documents/
https://docs.mongodb.com/manual/tutorial/query-documents/

